首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   41篇
  国内免费   31篇
  2023年   8篇
  2022年   12篇
  2021年   27篇
  2020年   19篇
  2019年   12篇
  2018年   18篇
  2017年   13篇
  2016年   20篇
  2015年   33篇
  2014年   29篇
  2013年   40篇
  2012年   42篇
  2011年   31篇
  2010年   17篇
  2009年   24篇
  2008年   18篇
  2007年   16篇
  2006年   10篇
  2005年   18篇
  2004年   18篇
  2003年   9篇
  2002年   20篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   7篇
  1991年   3篇
  1990年   3篇
  1988年   1篇
  1983年   4篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有506条查询结果,搜索用时 203 毫秒
81.
In self-incompatible plants of the Solanaceae, the specificity of pollen rejection is controlled by a single multiallelic S-locus. Pollen tube growth is inhibited in the style when its single S-allele matches either S-allele present in the diploid pistil. Each S-allele encodes an S-RNase with a unique sequence. S-RNases are secreted into the extracellular matrix of the transmitting tract which guides pollen tubes toward the ovary. Although it is known that S-RNases are the determinants of S-allele specificity in the pistil, it is not known how allele-specific information is encoded in the sequence. Therefore, we exchanged domains between S-RNases with different recognition specificities and expressed the chimeric proteins in transgenic plants to determine their effects on pollination behavior. Nine chimeric constructs were prepared in which domains from Nicotiana alata SA2- and SC10-RNases were exchanged. Among these nine constructs, the entire S-RNase sequence was sampled by exchanging single variable domains as well as larger blocks of contiguous sequences. The chimeric S-RNases retained enzymatic activity and were expressed at levels comparable to control transformants expressing SA2- and SC10-RNase. However, none of the chimeric S-RNases caused rejection of either SA2- or SC10-pollen. We conclude that the recognition function of S-RNases can be disrupted by alterations in many parts of the sequence. It appears that the recognition function of S-RNase is not localized to a specific domain.  相似文献   
82.
番茄(Lycopersicon)的化感作用研究   总被引:67,自引:7,他引:60  
采用室内生测、室外盆栽和水培相结合的研究方法,以多种受体品种来探讨番茄 的化感作用.结果表明,番茄植物不仅具有自毒作用,番茄植株的水提液对黄瓜、萝卜、生 菜、白菜、包心菜的幼苗生长均有显著的抑制作用;番茄植株的挥发物对黄瓜的生长具有 明显的抑制作用,但对绿豆、白菜、生菜及番茄自身的幼苗生长则无明显的影响;番茄移苗 后40 d之内,其根分泌物对黄瓜生长有明显抑制作用,但对生菜作用不明显认为自毒作 用是造成番茄连作障碍的原因之一,指出番茄种植应采用轮作方式,水培或大棚种植番茄 时,应避免与黄瓜间种.  相似文献   
83.
84.
Proteomic experiments were performed to identify novel glutathione (GSH) binding proteins expressed in the mammalian central nervous system. Bovine brain lysate was affinity purified using an immobilized glutathione-Sepharose column. Proteins that bound the immobilized glutathione were eluted with free glutathione and identified by one- and two-dimensional electrophoresis coupled with mass spectrometric analysis of tryptic fragments. Major proteins purified by this technique were glutathione S-transferase-mu (GST-mu) and GST-pi and lanthionine synthase C-like protein-1 (LanCL1). LanCL1 is a mammalian homologue of a prokaryotic enzyme responsible for the synthesis of thioether (lanthionine) cross-links within nascent polypeptide chains, yielding macrocyclic proteins with potent microbicidal activity. An antibody against LanCL1 was generated and applied to immunochemical studies of spinal cord tissue from SOD1G93A transgenic mice, a model for amyotrophic lateral sclerosis (ALS), wherein LanCL1 expression was found to be increased at presymptomatic stages of the disease. These results indicate LanCL1 is a glutathione binding protein possibly significant to neurodegenerative disease.  相似文献   
85.
In seeking evidence of the existence of adaptive immune system (AIS) in ancient chordate, cDNA clones of six libraries from a protochordate, the Chinese amphioxus, were sequenced. Although the key molecules such as TCR, MHC, Ig, and RAG in AIS have not been identified from our database, we demonstrated in this study the extensive molecular evidence for the presence of genes homologous to many genes that are involved in AIS directly or indirectly, including some of which may represent the putative precursors of vertebrate AIS-related genes. The comparative analyses of these genes in different model organisms revealed the different fates of these genes during evolution. Their gene expression pattern suggested that the primitive digestive system is the pivotal place of the origin and evolution of the AIS. Our studies support the general statement that AIS appears after the jawless/jawed vertebrate split. However our study further reveals the fact that AIS is in its twilight in amphioxus and the evolution of the molecules in amphioxus are waiting for recruitment by the emergence of AIS.  相似文献   
86.
【目的】探索自然生态下蝉花内菌核、菌膜和环境细菌群落结构、功能及其相互关系。【方法】对细菌16S rRNA扩增片段进行高通量测序,分析贵阳市大将山和贵阳森林公园的蝉花内菌核、菌膜及其生境土壤的细菌群落组成、多样性及潜在功能。【结果】蝉花内菌核样本共检测到细菌562个属,菌膜样本521个属,菌际土样本578个属。两地的各组样本细菌群落结构相似,内菌核样本中假单胞菌属Pseudomonas、沙雷氏菌属Serratia占优势地位;菌膜样本中假单胞菌属和氨基杆菌属Aminobacter占优势;土壤样本以未分类的酸杆菌纲Acidobacteria和黄杆菌科Xanthobacteraceae为优势属。Venn图分析显示,菌际土样本包括了菌膜样本的大多数属,内菌核样本拥有较多的特有属,如沃尔巴克氏体属Wolbachia和立克次氏体Rickettsia等。PICRUSt功能预测结果显示,共计24个基因功能家族,主要与物质能量的代谢运输、细胞的行为发生及调控等功能相关。【结论】蝉花及其微生境中细菌具有丰富多样性,它们的潜在功能可能与营养物质的新陈代谢有关,对蝉花的个体生长发育有重要作用。研究结果对蝉花虫草的生态信息数据补充和仿野生栽培具有参考价值。  相似文献   
87.
Purpose: Cervical cancer (CC) is one of the most general gynecological malignancies and is associated with high morbidity and mortality. We aimed to select candidate genes related to the diagnosis and prognosis of CC.Methods: The mRNA expression profile datasets were downloaded. We also downloaded RNA-sequencing gene expression data and related clinical materials from TCGA, which included 307 CC samples and 3 normal samples. Differentially expressed genes (DEGs) were obtained by R software. GO function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed in the DAVID dataset. Using machine learning, the optimal diagnostic mRNA biomarkers for CC were identified. We used qRT-PCR and Human Protein Atlas (HPA) database to exhibit the differences in gene and protein levels of candidate genes.Results: A total of 313 DEGs were screened from the microarray expression profile datasets. DNA methyltransferase 1 (DNMT1), Chromatin Assembly Factor 1, subunit B (CHAF1B), Chromatin Assembly Factor 1, subunit A (CHAF1A), MCM2, CDKN2A were identified as optimal diagnostic mRNA biomarkers for CC. Additionally, the GEPIA database showed that the DNMT1, CHAF1B, CHAF1A, MCM2 and CDKN2A were associated with the poor survival of CC patients. HPA database and qRT-PCR confirmed that these genes were highly expressed in CC tissues.Conclusion: The present study identified five DEmRNAs, including DNMT1, CHAF1B, CHAF1A, MCM2 and Kinetochore-related protein 1 (KNTC1), as potential diagnostic and prognostic biomarkers of CC.  相似文献   
88.
Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture studies. However, human clinical trials of hydroxychloroquine failed to establish its usefulness as treatment for COVID-19. This compound is known to interfere with endosomal acidification necessary to the proteolytic activity of cathepsins. Following receptor binding and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, thereby activating membrane fusion for cell entry. The plasma membrane-associated protease TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on TMPRSS2 expression. This difference can be reversed when the furin-cleavage site of the SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a mechanistic explanation for the limited in vivo utility of hydroxychloroquine as a treatment for COVID-19.  相似文献   
89.
Coastal ocean bacterioplankton control the flow of dissolved organic carbon (DOC) from terrestrial and oceanic sources into the marine food web, and regulate the release of inorganic carbon to atmospheric and offshore reservoirs. While the fate of the chemically complex coastal DOC reservoir has long been recognized as a critical feature of the global carbon budget, it has been problematic to identify both the compounds that serve as major conduits for carbon flux and the roles of individual bacterioplankton taxa in mediating that flux. Here we analyse random libraries of expressed genes from a coastal bacterial community to identify sequences representing DOC‐transporting proteins. Predicted substrates of expressed transporter genes indicated that carboxylic acids, compatible solutes, polyamines and lipids may be key components of the biologically labile DOC pool in coastal waters, in addition to canonical bacterial substrates such as amino acids, oligopeptides and carbohydrates. Half of the expressed DOC transporter sequences in this coastal ocean appeared to originate from just eight taxa: Roseobacter, SAR11, Flavobacteriales and five orders of γ‐Proteobacteria. While all major taxa expressed transporter genes for some DOC components (e.g. amino acids), there were indications of specialization within the bacterioplankton community for others (e.g. carbohydrates, carboxylic acids and polyamines). Experimental manipulations of the natural DOC pool that increased the concentration of phytoplankton‐ or vascular plant‐derived compounds invoked a readily measured response in bacterial transporter gene expression. This highly resolved view of the potential for carbon flux into heterotrophic bacterioplankton cells identifies possible bioreactive components of the coastal DOC pool and highlights differing ecological roles in carbon turnover for the resident bacterial taxa.  相似文献   
90.
Neuropathic pain has been reported as a type of chronic pain due to the primary dysfunction of the somatosensory nervous system. It is the most serious types of chronic pain, which can lead to a significant public health burden. But, the understanding of the cellular and molecular pathogenesis of neuropathic pain is barely complete. Long noncoding RNAs (lncRNAs) have recently been regarded as modulators of neuronal functions. Growing studies have indicated lncRNAs can exert crucial roles in the development of neuropathic pain. Therefore, our present study focused on the potential role of the lncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) in neuropathic pain progression. Firstly, a chronic constrictive injury (CCI) rat model was built. CRNDE was obviously increased in CCI rats. Interestingly, overexpression of CRNDE enhanced neuropathic pain behaviors. Neuroinflammation was induced by CRNDE and as demonstrated, interleukin-10 (IL-10), IL-1, IL-6, and tumor necrosis factor-α (TNF-α) protein levels in CCI rats were activated by LV-CRNDE. For another, miR-136 was obviously reduced in CCI rats. Previously, it is indicated that miR-136 participates in the spinal cord injury via an inflammation in a rat model. Here, firstly, we verified miR-136 could serve as CRNDE target. Loss of miR-136 triggered neuropathic pain remarkably via the neuroinflammation activation. Additionally, IL6R was indicated as a target of miR-136 and miR-136 regulated its expression. Subsequently, we confirmed that CRNDE could induce interleukin 6 receptor (IL6R) expression positively. Overall, it was implied that CRNDE promoted neuropathic pain progression via modulating miR-136/IL6R axis in CCI rat models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号